王艳玲

2023年07月08日 09:57


王艳玲 讲师

所在单位:东莞理工学院计算机学院

通信地址:广东省东莞市松山湖东莞理工学院计算机学院

办公地点: 8A406

E-mail: 397452795@qq.com




个人简介

王艳玲, 2018年6月在华南理工大学获理学博士学位。2018年6月来东莞理工学院计算机科学与技术学院任教.





主要研究方向

量子计算与量子信息(本人主要研究特殊量子态集的构造,包含不可扩展纠缠基、局域不可区分的量子态集、量子信息掩蔽等。研究基础:线性代数、矩阵分析和数值分析)




基金项目及荣誉

1.参与的项目“量子理论及其在量子信息中的应用”获2018年广东省科学技术奖励二等奖。

2. 主持国家自然科学基金青年科学基金项目:多体量子态的局域区分性及其在量子秘密共享中的应用(No.11901084), 2020.1-2022.12




已发表论文

[1] Y.-L. Wang*. Constructions of Unextendible Special Entangled Bases. Frontiers in Physics. 2022. 10. 884327. 1-8.

[2] M.-S. Li, Y.-L. Wang*, and F. Shi. Local discrimination of generalized Bell states via commutativity. Phys. Rev. A. 2022. 105 (3). 032455:1-8.

[3] F. Shi, M.-S. Li, M. Hu, L. Chen, M.-H. Yung, Y.-L. Wang*, and X. Zhang*. Strongly nonlocal unextendible product bases do exist. Quantum. 2022. 6. 619:1-15.

[4] M.-S. Li, Y.-L.Wang*, F. Shi, and M.-H. Yung. Local distinguishability based genuinely quantum nonlocality without entanglement. J. Phys. A: Math. Theor. 2021. 54(44). 445301:1-15.

[5] Y.-L. Wang*. Planar k-Uniform States: a Generalization of Planar Maximally Entangled States. Quantum Inf. Process. 2021. 20(8).271:1-20.

[6] Y.-L. Wang, M.-S. Li*, and M.-H. Yung. Graph-connectivity-based strong quantum nonlocality with genuine entanglement. Phys. Rev. A. 2021. 104 (1). 012424:1-10.

[7] M.-S. Li, S.-M. Fei*, Z.-X. Xiong, and Y.-L. Wang*. Twist-teleportation based local discrimination of maximally entangled states. Sci. China-Phys. Mech. 2020. 63(8). 280312 :1-7.

[8] M.-S. Li*, and Y.-L. Wang. Construction of special entangled basis based on generalized weighing matrices. J. Phys. A: Math. Theor. 2019. 52(37). 375303:1-18.

[9] M.-S. Li, and Y.-L. Wang*. k-uniform quantum states arising from orthogonal arrays. Phys. Rev. A. 2019. 99(4). 042332:1-7.

[10] Y.-L. Wang, M.-S. Li*, and Z.-X. Xiong. One-way local distinguishability of generalized Bell states in arbitrary dimension. Phys. Rev. A. 2019. 99(2) 022307:1-7.

[11] M.-S. Li, and Y.-L. Wang*. Masking quantum information in multipartite scenario. Phys. Rev. A. 2019. 98(6). 062306:1-6.

[12] M.-S. Li, and Y.-L. Wang*. Alternative method for deriving nonlocal multipartite product states. Phys. Rev. A. 2018. 98(5). 052352:1-7.

[13] Y.-L. Wang*, M.-S. Li, S.-M. Fei, and Z.-J. Zheng. The local distinguishability of any three generalized Bell states. Quantum Inf. Process. 2017. 16(5).126:1-9.

[14] Y.-L. Wang, M.-S. Li, S.-M. Fei, and Z.-J. Zheng*. Connecting unextendible maximally entangled base with partial Hadamard matrices. Quantum Inf. Process. 2017. 16(3). 84:1-11.

[15] Y.-L. Wang, M.-S. Li, Z.-J. Zheng*, and S.-M. Fei. The local indistinguishability of multipartite product states. Quantum Inf. Process. 2017. 16(1). 5:1-13.

[16] Z. Wang , Y.-L. Wang, and Z.-X. Wang*. Trace distance measure of coherence for a class of qudit states. Quantum Inf. Process. 2016, 15(11): 4641-4648.

[17] Y.-L. Wang*, M.-S. Li, Z.-J. Zheng, and S.-M. Fei. On small set of one-way LOCC indistinguishability of maximally entangled states. Quantum Inf. Process. 2016. 15(4). 1661-1668.

[18] Y.-L. Wang*, M.-S. Li, Z.-J. Zheng, and S.-M. Fei. Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A. 2015. 92(3). 032313:1-5.

[19] M.-S. Li*, Y.-L. Wang, Z.-J. Zheng, and S.-M. Fei. d locally indistinguishable maximally entangled states in

. Phys. Rev. A. 2015. 91(4) 042318 :1-5.

[20] Y.-L. Wang, M.-S. Li*, Z.-J. Zheng, and S.-M. Fei. The Local Unitary Equivalence of Multipartite Pure States. Inter. J. Theor. Phys. 2015. 54(2). 425-434.

[21] Y.-L. Wang*, M.-S. Li, and S.-M. Fei. Unextendible maximally entangled bases in

. Phys. Rev. A 2014. 90(3). 034301:1-4.

[22] M.-S. Li*, Y.-L. Wang, and Z.-J. Zheng. Unextendible maximally entangled bases in

. Phys. Rev. A 2014. 89(6). 062313:1-3.




本科课程:

高等数学、线性代数、概率论、数值分析