肖静

2023年07月08日 10:00


肖静,博士

邮箱:xiaojing@dgut.edu.cn

工作经历

2012-2018 广东医科大学,信息工程学院

2020-2021华南理工大学,访问学者

2018-至今 东莞理工学院,计算机科学与技术学院

教授课程

高等数学、线性代数、工科数学分析、复变函数与积分变换、概率论与数理统计等

研究方向

微分方程、生物计算数学

基金项目

1. 广东省自然科学基金博士启动项目,2015A030310127,变分法在分数阶微分方程中的应用研究,2015/8-2018/8,10万元,结题,主持

2. 广东省自然科学基金博士启动项目,2014A030310239,混合型手机病毒的脉冲和最优控制模型,2015/1-2018/1,10万元,结题,参与

3. 国家自然科学基金面上项目,12271095,求解高维有向无环图优化模型有效算法的研究,2023.01-2026.12,46万元,在研,参与

4. 高等数学C课程思政示范课堂项目,2022-2023,主持

论文

1. Jing Xiao, Juan J.Nieto*, Variational approach to some damped Dirichlet nonlinear impulsive differential equations, Journal of the Franklin Institute, 348(2), pp: 369-377, 2011.

2. Jing Xiao, Juan J.Nieto, Zhiguo Luo*, Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods, Communications in Nonlinear Science and Numerical Simulation, 17(1), pp: 426-432, 2012.

3. Jing Xiao, Juan J.Nieto, Zhiguo Luo*, Multiple positive solutions of the singular boundary value problem for second-order impulsive differential equations on the half-line, Boundary Value Problems, doi:1155/2010/281908, 2010.

4. Zhiguo Luo*, Jing Xiao, Yanli Xu, Subharmonic solutions with prescribed minimal period for some second order impulsive differential equations, Nonlinear Analysis,75(4), pp: 2249-2255, 2012.

5. Chunming Zhang*, Wanping LiuJing Xiao, Yun Zhao, Hopf bifurcation of an improved SLBS model under the influence of latent period, Mathematical Problems in Engineering, Article ID 196214, pp:1-8, 2013.

6. Jing Xiao*, J.Juan Nieto, Zhiguo Luo, Existence of multiple solutions of some second order impulsive differential equations, Topological Methods In Nonlinear Analysis, Volume 43, No. 2, 2014, 287–296.

7. Wenzhe Xie, Jing Xiao*, Zhiguo Luo, , Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem, Abstract and Applied Analysis,2014, ID :540351, 9 pages.

8. Wenzhe Xie, Jing Xiao*, Zhiguo Luo, Existence of extremal solutions for nonlinear fractional differential equation with nonlinear boundary conditions,Applied Mathematics Letters,41(2015)46-51.

9. Yong Wang, Chang Liu, Jing Xiao, Feng-xiang Mei*,Quasi-momentum theorem in Riemann-Cartan space, Appl.Math.Mech.-Engl.Ed, 39(5), 733-746(2018)

10. Wang Yong, Cui Jinchao, Jing Xiao, Zhang Huailing *,Simplification of Dynamic Equations of a Nonholonomic Motion Tra nsfer Mechanism, Proceedings of The 2021 IEEE International Conference on Real-time Computing and Robotics , Xining, China , 2021-7-15 to 2021-7-19.